Lesson Plan: Solving Two-Step Equations

Objective:

Students will solve two-step equations involving addition, subtraction, multiplication, and division and understand the process to isolate the variable.

Materials:

- · Whiteboard and markers
- · Student notebooks and pencils
- Handouts with practice problems
- · Optional: Graphing calculator or algebra tiles

Lesson Duration:

40 minutes

Introduction (5 minutes)

1. Hook/Engagement:

• Start with a quick mental math exercise related to solving simple equations. For example:

o "If

x + 5 = 12

, what is

x

?"

2. Objective and Agenda:

- Explain that today's focus is on solving two-step equations.
- Outline the steps and what students will learn:
 - a. Reviewing the process of solving two-step equations.
 - b. Practicing with different types of equations.

Direct Instruction (10 minutes)

1. Review Two-Step Equations:

• Write an example equation on the board:

$$3x - 7 = 11$$

- Explain the steps to solve it:
 - a. Isolate the term with the variable:
 - Add 7 to both sides:

$$3x - 7 + 7 = 11 + 7$$

o Simplify:

$$3x = 18$$

- b. Solve for the variable:
 - o Divide both sides by 3:

$$\frac{3x}{3} = \frac{18}{3}$$

o Simplify:

$$x = 6$$

- Reinforce that the goal is to isolate the variable on one side of the equation.
- 2. Different Types of Two-Step Equations:
 - Show examples with different operations:
 - Addition and Division:

$$\frac{x+5}{4} = 7$$

Subtraction and Multiplication:

$$2(x-3)=8$$

Guided Practice (10 minutes)

1. Solve Together:

0

Provide a couple of problems for students to solve with guidance:

$$4x + 9 = 21$$

$$\circ \qquad \qquad \frac{2x-3}{5} = 1$$

- Solve each problem step-by-step as a class, asking for student input at each step.
- 2. Check Understanding:
 - Ask students to share their solutions and explain their reasoning.

Independent Practice (10 minutes)

1. Practice Problems:

• Distribute a handout with practice problems for students to solve independently:

$$2x + 7 = 15$$

$$\frac{x - 4}{3} = 2$$

$$5(x - 2) = 20$$

$$\frac{3x + 6}{2} = 9$$

2. Circulate and Assist:

• Walk around the classroom to monitor progress and provide assistance as needed.

Closure (5 minutes)

1. Review and Recap:

- Quickly review the steps to solve two-step equations:
 - a. Eliminate constants from the term with the variable.
 - b. Isolate the variable by performing the inverse operation.

2. Exit Ticket:

- Ask each student to solve a quick two-step equation on a sticky note or index card as an exit ticket:
 - Example:

$$3(x-2) = 12$$

Collect these to assess understanding.

Additional Tips:

- **Differentiation**: If some students finish early or need extra help, provide additional practice problems or algebra tiles for visual learners.
- **Interactive Examples**: Use graphing calculators or algebra software if available to show the graphical representation of solutions.
- Enrichment: Challenge advanced students with equations involving fractions or variables on both sides.

This lesson plan ensures a thorough understanding of two-step equations by combining direct instruction with ample practice and assessment.